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The problem of the stability of equilibrium of fluid in an infinite 
cylinder heated from below has already been solved by one of the present 
authors [ 1 1. Only those plane disturbances from equilibrium were con- 
sidered in which the velocity vector has no component along the axis of 

the cylinder, all quantities representing the disturbance being inde- 
pendent of the coordinate in the direction of the axis. Shaidurov [2 1 
pointed out that in experiments one also observes disturbances from 
equilibrium which show a cellular pattern. The object of this paper is 
to study the stability of equilibrium in terms of spatial disturbances 
periodio along the cylinder axis. Galerkin’s method is used in solving 
this problem. 

1. Equations of the problem. 'Ihe fluid is considered to fill a 
horizontal cylindrical cavity within an infinite homogeneous solid mass. 
A steady temperature gradient A is maintained in the solid for a con- 
siderable distance from the cavity, and is directed vertically downwards 
(the fluid is heated from below). If the magnitude of the gradient is 
less than the least critical value [ 3 1 , the fluid will remain in equi- 
librium. In this case the velocity of the fluid Vo = 0; the temperature 
gradient in the fluid VT0 and the pressure gradient VP,, in equi- 
librium, are given by 

VT,= - $&y = -A'y, vpo = pgpToyl UZ-14. 
%? 

In these expressions A’ is the equilibrium temperature gradient in 
the fluid; y is the unit vector directed vertically upwards; K and K# 
are the conductivity coefficients of fluid and solid. The small disturb- 
ances which arise vary in time according to eWQt where u is real 13 I, 
At the boundary of stability u = 0. The equations for the characteristic 
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motions take the following form: 

VP = Av i- RTy, div v = 0 (1.1) 

AT = -vv’(, AT, = 0 (1.2) 

Here V, T, p, Te are dimensionless disturbances in velocity, tempera- 
ture, pressure and solid temperature. 

Units of distance, velocity, pressure and temperature are, respect- 
ively: a (radius of cylinder), x/ a, p v x/ a2, A’a. The Rayleigh number 
l? = g,6A’a4/vx is determined from the equilibrium temperature gradient 
in the fluid. 

‘Ihe boundary conditions for the dimensionless disturbances are as 
follows: 

v, T -are finite when, r = 0 

aT 
v = 0, T = T,, ctg=$ when r-=1 (13 

I',+0 when. P - 00 

‘Ihe problem is to look for the characteristic values of the parameter 
R which determine the critical equilibrium, and the corresponding 
critical motions of the fluid. 

2. Approximation for velocity. Bearing in mind that we solve 

the problem by Galerkin’s method, we approximate the velocity thus: 

v = Clyl+...+CNfp)N 
(2.1) 

All the functions +i satisfy the equation of continuity and the bound- 
ary conditions of the problem. 

Let us introduce Cartesian coordinates, z being along the axis of the 
cylinder, the axes n and y being in the plane of a section (the x-axis 
is vertically upwards). Considering periodic disturbances along the z- 
axis we put 

II, = fl (x, y) k cos x-z, z+, = fz (z, y) k cos kz, u, = f3 (IC, y) sin kz (2.2) 

Here k is the wave number of the disturbance. We will look for the 
functions fi in polynomial form, subject to vanishing at the surface of 

the cylinder [ 4 1 . 
fl = (1 - Fz) 2 UmnXm?Jn, f2 = (1 - F2) x b,,Xmyn 

m, n 

* n f3 = (1 - F”) 2 C,, Xmyn (2.3) 

m.7L 
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It follows from the equation of continuity 

therefore coefficients a,,, b,, and c,, satisfy the expressions 

(Ill + 1) [a,-I,,, - am+,, n + %I+,, n-2 I + (n + 1) [bn,n-1 - bn, n+1 + 

+ h?-2, n+1 I + cm-?, n + cm, ?I-” - cm = 0 (2.4) 

Let us confine ourselves to IB + n Q 2. Formulas (2.3) will then con- 
tain eighteen unknown coefficients. In view of (2.4) these coefficients 
will be connected through thirteen relations. There are therefore five 
unknown coefficients, which allows a system of five basic vectorial 
functions qSi to be constructed. ‘Ike choice of such functions is evident- 
ly not single-valued, If, however, we consider syunnetry, the following 

system of functions appears to be convenient: 

(1 - 9) yk vos kz, (1 - 9) (1 - x2 - 5~9 k COB kr. 
‘pl = 

( 
- (1 - 9) xk cos kz, p2 = 4 (1 -. 9) xyk cos kz 

0 1 0 

1 

(1 - r2)? k cos kz, 

‘g3 = 0 (pa xz / ;;\;2;‘;lx? ;.‘!y2, k Cos kz 

4(1 -rr2)rsinkz, I 0 

‘pj = 
1 

(1 - rd(j2 k cos kz 
4 (1 - 9) y sin kz 

‘Ike basic motions are illustrated in Fig. 1. The critical motions of 
the fluid will thus be the superposition of these five basic motions 

v = Clcpl + c2(p2 + c3r93 + cay4 + cq5 (2.5) 

3. Solution of the problem. Let us find the temperature in the 
fluid and in the solid. To do this we must substitute the velocity (2.5) 
into the conductivity equation (1.2) and solve with boundary conditions 
(1.3). ‘IXe temperature in the fluid is 

2’ = -k cos kz ([A, + A2r2 + A4r4 + d,, (kr) I + cl [Blr f Bar3 + b11 (kr)]+ 

i- 2 [D2r2 + D4r4 + dI2 (kr)] (~3 cos 2~ f c4 sin 2~)) (3.1) 

in which 

A, = -k+ [(k” - 8k2 + 64) c2 + 

+ (k4 - 16k2 + 192) ~31 



1554 C.Z. Gershuni and E.M. Zhukhovitskii 

AZ = $ [(IV - 8) cz + (2k2 - 24) ~31 

A4 = - $ (c2 + 3~3) 

Bl = - &(P - 8), BS =D4 =$ 

D2 = -&(k2 - 12) (3.2) 

a = & (2 [(k” + 8) li,’ - 4aM,,l ~29 + 

+ [(8k2 + 48) K,’ - a (FE3 + 24k) &,I c3) 

b = & [-4k Kl’f a (k2 + 4) K11 

d= & [- 6kK2’ + a (k2 + 12) K21 

1Ui = .Iih’i’ - UIi’Ki 

In these formulas Ii and Ki are Bessel functions 
of imaginary argument; in the definition of the co- Fig. 1. 

efficients (3.2) the wave number k is the argument. 
In Formula (3.1) the coefficients ci are as yet un- 
determined. The temperature Te in the solid is no 
longer required for the calculations, and it is therefore not introduced 

here. 

In order to determine the coefficients ci we multiply the first of 

Equations (1.1) by oi and integrate over the volume of one “nucleus” or 

“cell” (i.e. over a section of the cylinder along t between the limits 
0 to X = 2n/k). We then get a system of five equations 

\ Avyi dV + R \ Tyyi dV = 0 (3.3) 

The integral containing Vp is equal to zero, a point which is evident 
if we integrate by parts. 

If we substitute the velocity (2.5) and the temperature (3.1) into 
(3.3) we arrive at a system of five homogeneous linear equations for de- 
termining the coefficients c i. ‘Ihe determinant of this system has the 

following elements which are nonzero: alI, azz, aS3, az3 = as2, ak4, 

Q55’ a45 = a54* The elements of the determinant are very cumbersome 
functions of the Rayleigh number R, the wave number of the disturbance k 
and the conductivity ratio a. If we equate the determinant to zero we 

find five critical Rayleigh numbers and five sets of coefficients Ci 
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which determine the critical motions, 

4. Critical gradients and critical motions. One of the roots 
is determined from the equation all = 0. From it we find the critical 
Rayleigh number (as will be evident from what follows, it is convenient 
to call it the second critical R) 

R,= 
2k5 (16 + k2) w1 

K1' [ 12kaZa + (k3 + 8k) I,] - cdl [(p + 44k) 14 + (7k2 + 8) 151 (4.1) 

The critical motion corresponding to it is 

v2 = C& (4.2) 

This function represents a motion with circular trajectories lying in 
planes perpendicular to the cylinder axis. A 
along the axis results in reversal of motion 
disturbances X = ~0 [ 1 I*) 

H 
2 

= 960 (1 + 4 
2 + 7% 

displacement of h/2 = s/k 
(Fig. 1). When k = 0 (plane 

When k increases (the wavelength decreases) the Rayleigh number in- 

creases monotonically; R, = 2k” for k >> 1. 

The following two critical Rayleigh numbers are found as roots of the 
quadratic 

Here 
u22”33 - a23a32 = 0 (4.3) 

a22 = & (k4 + 30/i”) + & {(30k4 - kG) + 2 [8 (k2 + 6) Kl + 

+ UK, (Ic3 f 24k)l ++ [ -66FE2K2’ + c&2 (k3 + 12k) I} 

a33 = k (3k4 + 30rC2 + 160) + & {Kl 154 (k3 + 36/t) 15 + 

+ (3h4 + 196k2 + 32) Is] + UK-, 112 (3k3 + 28k) 14 + (3k4 + 52k2 - 160) IS]} 

a23=m=$k2 +$&- {Sl [I8 (3k3 + 88k) 15 +(3k4 + 176k2 f 192) I,]\ + 

+ a& ,I?’ (3;f3 + 8k) Ia + (3k4 + 32k2 - 960) 151) 

l In [ 1 1 the Rayleigh number R is expressed through the temperature 
gradient within the solid, and not in the fluid (R = Rf) as in the 
present work. The connection between them is 

l$ = -?- R, 
l+a 
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The expressions for the roots of Equation (4.31 R, and R, (R, < R,) 
are very cumbersome and are not given here. When k = 0 

R 
1 

= 23040 (1 + a) 
Yl + 41u 

On increasing the wave number, R, first of all gets less, goes through 
a minimum at some value of k and then rises; R, = 0.75 k” when k >> 1. 

Root R, tends to infinity for k -t 0 by the following law: 

fi __ 23040 2 - 0,5ak2 In (k / 2) 
3- k2 73 - 120a In ih- i Z] 

When k is increased the root R, goes 
through a minimum, increases and 

R3 = 2.35 k’ when k >> 1. 

Critical motions corresponding to 
Rayleigh numbers R, and R, result from 

I500 

the superposition of basic motions +z 

and 4 

Because of the homogeneity of the 
problem coefficients, cz and c2’ can be 
considered arbitrary; the weighting 
ratios cJ/cz and c3’/c2’ depend on k. 500 

In the region of k of the order of 
unity the critical motion v1 contains, 
in the main, basic function & with a 
small admixture of (62, When k -, 0, how- 
ever, the weighting ratio changes 0 

sharply and v1 + c2$. Fig. 2. 

Motion v3 on the other hand consists mainly of & with an admixture 

of +3, but when k + 0 it transforms into pure motion #$ (when k = 0 
horiz6ntal trajectories correspond to motion $3 and thus R, + m). When k 
is great the basic functions & and +3 enter the critical motions v1 and 
v3 with approximately equal weight, whilst c3/c2 > 0, and c3’/c2’ < 0. 

The remaining two critical values R, and R, are found from equation 

“41a55 - a45=54 
= 0; calculation gives 

ti _ 12k* (kG i_ 40k” + 320k” + 1600) 
4 

x ~-- 
Sk4 + .?#kZ + 160 
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’ &’ [16kv5 + (ks + 1%~) I,] - aK:;(k” + 8%) 15 + (1U.V + 36) I,] (4.5) 

When k = 0 
R 

4 
_ 24040 (1 + a) ~- 

7 + 17a 

When k is increased root R, increases monotonically and R, = 4 k” 

when k >> 1. 

The critical motion V, is indeed a combination of 4, and 4s with de- 
finite weighting ratios: 

c5 
v~=wp*+cE&5, cq=-- 

20k2 

Sk* + 30k2 + 160 

From this it is evident that when k + 0 v4 + ~~4~. 

The critical motion v5 contains only the basic function 45, so that 
v5 = ~~‘4~; the trajectories of this motion are horizontal and the cor- 
responding critical Rayleigh number is infinite. 

In our approximation, therefore, it has been possible to find five 
critical motions and the critical temperature gradients corresponding to 
them. As an example, in Fig. 2, critical Rayleigh numbers are shown as 
functions of wave number of disturbance for a = 3. lhe character of the 
spectrum does not alter with variation in a. Shifts in the stability 
curves with changes in a can be assessed from the limiting values of 
Rayleigh numbers when k = 0 and when k >> 1, derived above. It is evident 
from Fig. 2 that the motions which are most dangerous from the point of 
view of upsetting stability are v1 and v2; the two lower level spectra 
correspond to these. On the stability curve R,(k) the minimum is attained 
when k = 0, i.e. when X = 00 (pl ane disturbances). On the curve R,(k) the 
minimum is attained at some finite value of k, i.e. to the minimum R,. 
there corresponds a subdivision into nucleus cells of given length; i.e. 
the picture is similar to what happens in the Rayleigh case of insta- 
bility in a plane horizontal layer (Benard cells). We give below minimum 
values of Rayleigh numbers R,* and R,* for several values of a. 

cl 0 1 10 100 00 

Rl, 260 210 134 102 96 
Rf, 480 213 147 138 137 

It is evident that R,* < R,* over the whole range of a, and the 
values do not differ greatly from each other. The simultaneous appear- 
ance, therefore, of both critical motions is quite likely to occur in an 
experiment. It would appear that a superposition of these critical 
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motions was indeed observed in Shaidurov's tests. 

BIBLIOGRAPHY 

1. Zhukhovitskii, E. M., Primenenie metoaa Galerkina k zadache ob ustoi- 

chivosti neravnomerno nagretof zhidkosti (Application Of Galerkin’s 

method to the problem of stability of a nonuniformly heated fluid). 

PRIM Vol. 18. No. 2. 1954. 

2. Shaidurov, G. F., Teplovaia neustoich~vost’ zhidkosti v gorizontal’- 

nom tsilindre (Thermal instability of fluid in a horizontal 

cylinder). fnzh. Fiz. Zh. Vol. 4, No. 2, 1961. 

3. Sorokin, V.S., Variatsionnyi method v teorii konvektsii (Variational 

method in convection theory). PMM Vol. 17, No. 1, 1953. 

4. zhukhovitskii, E. M., Ob ustoichivosti neravnomerno nagretoi zhid- 

kosti v sharovoi polosti (The stability of a nonuniformly heated 

fluid in a spherical cavity). PMM Vol. 21. No. 5, 195’7. 

Translated by V.H.B. 


